

Date:06/11/24 GRADE: X

MT - 03 (2024-25) ANSWER KEY MATHEMATICS

Max marks: 20 Time: 50 Minutes

General Instructions:

1 All questions are compulsory.

2. Marks are indicated against each question.

Qn. No	QUESTIONS 1 TO 5 CARRY ONE MARK EACH	Marks allocated
1	In the given figure, PQ//AC. If BP = 4cm, AP = 2.4 cm and BQ = 5cm, then length of BC is a. 8 cm b. 3 cm c. 0.3 cm d. $\frac{25}{3}$ a. 8 cm b. 3 cm c. 0.3 cm c. 0.3 cm d. $\frac{25}{3}$ b. 3 cm d. $\frac{25}{3}$ b. 3 cm d. $\frac{25}{3}$ b. 3 cm d. $\frac{25}{3}$ c. 0.3 cm d. 0.3 cm	1
2	In the given figure, if PT is a tangent of the circle with center O and $\angle TPO=25^{\circ}$ then the measure of x is: a. 25° b. 65° c. 90° d. 115°	1
3	The area of a semi – circle of diameter 'd' ? a. $\frac{1}{16} \prod d^2$ b. $\frac{1}{4} \prod d^2$ c. $\frac{1}{8} \prod d^2$ d. $\frac{1}{2} \prod d^2$	1
4.	The radius of a sphere whose volume is $12 \ \Pi \ cm^3$, is a. 3 b. $3\sqrt{3}$ c. $\frac{3^{2/3}}{3}$ d. $3^{1/3}$	1

5	Assertion (A): In a circle of radius 6 cm, the angle of a sector is 60° . Then the area of the sector is $132/7$ cm ² .		
	Reason (R): Area of the circle with radius r is πr^2 .		
	(a) Both the statements – A and R are true, and R is the right		
	explanation for A		
	(b) Both the statements – A and R are true; R is not the correct		
	explanation for A		
	(c) A is true, but R is false		
	(d) R is true, but A is false		
	QUESTIONS 6 AND 7 CARRY TWO MARKS EACH		
6	A piece of wire 22 cm long is bent into the form of an arc of a circle subtending an angle of 60° at its Centre. Find the radius of the circle.	2	
	Length of the wire (arc length) = 22 cm		
	- Central angle (θ) = 60 degrees - We will use $\pi = 22/7$		
	Length of arc of a circle = $2 \pi r (\theta/360^{\circ})$ The radius of the circle is 21 cm .		
7	In given figure, AB is the diameter of a circle with center O and, AT is a tangent. If $\angle AOQ = 58^{\circ}$ find $\angle ATQ$	2	
	$\angle ABQ = \frac{1}{2} \angle AOQ$ $\Rightarrow \frac{1}{2} \times 58 = 29$ $\angle A = 90 \text{ (AT is a tangent)}$ $(BAT + (ADT + (ATO = 180) \text{ (angle sum preparty of trians)})$		
	$90 + 29 + 2 \text{ ATQ} = 180^{\circ}$ $2 \text{ ATQ} = 180 - 119$ $2 \text{ ATQ} = 61^{\circ}$		
	OUESTIONS 8 AND 9 CARRY THREE MARKS EACH		
		-	
8	State and prove Basic Proportionality theorem	3	
	If a line is drawn parallel to one side of a triangle intersecting the other two sides in distinct points, then the other two sides are divided in the same ratio.		
	Consider a triangle \triangle ABC, as shown in the given figure. In this triangle, we draw a line PQ parallel to the side BC of \triangle ABC and intersecting the sides AB and AC in P and Q, respectively.		
	According to the basic proportionality theorem as stated above, we need to prove:		
	AP/PB = AQ/QC		

Join the vertex B of ΔABC to Q and th	e vertex C to P to form the lines	
BQ and CP and then drop a perpendicular QN to the side AB and also		
draw PM \perp AC as shown in the given figure.		
ProofNow the area of ΔAPQ = 1/2 × AP × QN (Since, area of a triangle= 1/2Similarly, area of ΔPBQ= 1/2 × PB × QNarea of ΔAPQ = 1/2 × AQ × PMAlso,area of ΔQCP = 1/2 × QC × PM	ex Base x Height)	
AP/PB = AQ/QC		
		2
its central angle is 60°. Also find the a segment. (Use $\pi = 3.14$ and $\sqrt{3} = 1.3$	rea of the corresponding major 73) Since, ΔΟΑΒ is an isosceles triangle.	
	Let ∠OAB = ∠OBA = θ₁	
	and OA = OB = 12cm	
0 12cm 60° 12cm	∠AOB = θ = 60°	
A B	∴ ∠OAB + ∠OBA + ∠AOB = 180° [∵ Sum of all interior angles of a triangle is 180°]	
Given that, radius of a circle (r) = 12 cm	$\Rightarrow \Theta_1 + \Theta_1 + 60^\circ = 180^\circ$	
And central angle of sector OBCA (θ) = 60°	$\Rightarrow 2\theta_1 = 120^{\circ}$	
: Area of sector OBCA	$\Rightarrow \Theta_1 = 60^\circ$	
$= \frac{\pi r^2}{360} \times \Theta$ [here, OBCA = sector and ABCA = segment]	$\therefore \theta_1 = \theta = 60^{\circ}$	
$\frac{314 \times 12 \times 12}{360^{\circ}} \times 60^{\circ}$	So, the required ΔAOB is an equilateral triangle.	
= 3.14 × 2 × 12		
= 3.14 × 24 = 75.36cm ²		

	Now, area of $\triangle AOB = \frac{\sqrt{3}}{4}(side)^2$ [\because area of an equilateral triangle = $\frac{\sqrt{3}}{4}(side)^2$] = $\frac{\sqrt{3}}{4}(12)^2$ = $\frac{\sqrt{3}}{4} \times 12 \times 12 = 36\sqrt{3}cm^2$ Now, area of the segment of a circle i.e ABCA = Area of sector OBCA - Area of $\triangle AOB$ = (75.36 - 36 $\sqrt{3}$)cm ² Hence, the required of segment of a circle is: (75.36 - 36 $\sqrt{3}$)cm ² .	Required area of minor segment = 13.08 cm ² Area of circle = 3.14 x 12 x 12 = 452.16 cm ² Area of major segment = 439.08 cm ²	
10	Case Study: On a Sunday, your Parents took you displayed, and you wanted them to strawberry ice-cream for you. Obser questions:-	to a fair. You could see lot of toys buy a RUBIK's cube and rve the figures and answer the	

1. The length of the diagonal if each edge measures 6cm is	
a) 3√3	
b) 3√6	
c) √12	
d <mark>) 6√3</mark>	
2. Volume of the solid figure if the length of the edge is 7cm is	
a)256 cm ³	
b) 196 cm ³	
<mark>c) 343 cm³</mark>	
d) 434 cm ³	
3. What is the curved surface area of hemisphere (ice cream) if the base radius is 7cm?	
a) 309 cm ²	
b) 308 cm ²	
c) 803 cm ²	
d) 903 cm ²	
4. Slant height of a cone if the radius is 7cm and the height is 24 cm	
a) 26cm	
b) 25 cm	
c) 52 cm	
d) 62cm	
5. The total surface area of cone with hemispherical ice cream is	
a) 858 cm ²	
b) 885 cm²	
c) 588 cm ²	
d) 855 cm ²	